碳化硅(SiC)是由硅(Si)和碳(C)組成的半導(dǎo)體化合物,屬于寬帶隙(WBG)系列材料。它的物理鍵非常牢固,使半導(dǎo)體具有很高的機(jī)械,化學(xué)和熱穩(wěn)定性。寬帶隙和高熱穩(wěn)定性使SiC器件可以在比硅更高的結(jié)溫下使用,甚至超過200°C。碳化硅在電力應(yīng)用中提供的主要優(yōu)勢是其低漂移區(qū)電阻,這是高壓電力設(shè)備的關(guān)鍵因素。
憑借出色的物理和電子特性的結(jié)合,基于SiC的功率器件正在推動(dòng)功率電子學(xué)的根本變革。盡管這種材料已為人們所知很長時(shí)間,但由于可提供大而高質(zhì)量的晶片,在很大程度上將其用作半導(dǎo)體是相對較新的。近幾十年來,努力集中在開發(fā)特定且獨(dú)特的高溫晶體生長工藝上。盡管SiC具有不同的多晶型晶體結(jié)構(gòu)(也稱為多型晶體),但4H-SiC多型六方晶體結(jié)構(gòu)最適合于高功率應(yīng)用。六英寸的SiC晶圓如圖1所示。
6英寸SiC晶片(Source:ST)
SiC的主要特性是什么?
硅與碳的結(jié)合為這種材料提供了出色的機(jī)械,化學(xué)和熱學(xué)性能,包括:
·高導(dǎo)熱率
·低熱膨脹性和優(yōu)異的抗熱震性
·低功耗和開關(guān)損耗
·高能源效率
·高工作頻率和溫度(在最高200°C的結(jié)溫下工作)
·小芯片尺寸(具有相同的擊穿電壓)
·出色的熱管理,降低了冷卻要求
·壽命長
SiC在電子領(lǐng)域有哪些應(yīng)用?
碳化硅是一種非常適合于電源應(yīng)用的半導(dǎo)體,這首先要?dú)w功于其承受高壓的能力,該能力是硅所能承受的高壓的十倍之多?;谔蓟璧陌雽?dǎo)體具有更高的熱導(dǎo)率,更高的電子遷移率和更低的功率損耗。SiC二極管和晶體管還可以在更高的頻率和溫度下工作,而不會(huì)影響可靠性。SiC器件(例如肖特基二極管和FET / MOSFET晶體管)的主要應(yīng)用包括轉(zhuǎn)換器,逆變器,電源,電池充電器和電機(jī)控制系統(tǒng)。
為什么在功率應(yīng)用中SiC能夠勝過Si?
盡管硅是電子領(lǐng)域中使用最廣泛的半導(dǎo)體,但硅開始顯示出一些局限性,尤其是在大功率應(yīng)用中。這些應(yīng)用中的一個(gè)相關(guān)因素是半導(dǎo)體提供的帶隙或能隙。當(dāng)帶隙較高時(shí),它使用的電子設(shè)備可以更小,運(yùn)行更快,更可靠。它也可以在比其他半導(dǎo)體更高的溫度,電壓和頻率下工作。硅的帶隙約為1.12eV,而碳化硅的帶隙約為3.26eV,幾乎是其三倍。
為什么SiC可以承受如此高的電壓?
功率器件,尤其是MOSFET,必須能夠承受極高的電壓。由于電場的介電擊穿強(qiáng)度大約是硅的十倍,所以SiC可以達(dá)到非常高的擊穿電壓,從600V到幾千伏。SiC可以使用比硅更高的摻雜濃度,并且可以使漂移層非常薄。漂移層越薄,其電阻越低。理論上,給定高電壓,可以將漂移層的每單位面積的電阻減小到硅電阻的1/300。
為什么碳化硅在高頻下可以勝過IGBT?
在大功率應(yīng)用中,過去主要使用IGBT和雙極晶體管,目的是降低在高擊穿電壓下出現(xiàn)的導(dǎo)通電阻。但是,這些器件具有很大的開關(guān)損耗,從而導(dǎo)致產(chǎn)生熱量的問題,從而限制了它們在高頻下的使用。使用SiC,可以制造諸如肖特基勢壘二極管和MOSFET的器件,這些器件可實(shí)現(xiàn)高電壓,低導(dǎo)通電阻和快速操作。
哪些雜質(zhì)用于摻雜SiC材料?
在其純凈形式中,碳化硅的行為就像電絕緣體。通過控制雜質(zhì)或摻雜劑的添加,SiC可以表現(xiàn)得像半導(dǎo)體。P型半導(dǎo)體可以通過用鋁,硼或鎵摻雜而獲得,而氮和磷的雜質(zhì)會(huì)產(chǎn)生N型半導(dǎo)體?;谥T如紅外線輻射的電壓或強(qiáng)度,可見光和紫外線的因素,碳化硅具有在某些條件下而不在其他條件下導(dǎo)電的能力。與其他材料不同,碳化硅能夠在很寬的范圍內(nèi)控制器件制造所需的P型和N型區(qū)域。由于這些原因,SiC是一種適用于功率器件的材料,并且能夠克服硅提供的限制。
SiC如何實(shí)現(xiàn)比硅更好的熱管理?
另一個(gè)重要參數(shù)是導(dǎo)熱系數(shù),它是半導(dǎo)體如何消散其產(chǎn)生的熱量的指標(biāo)。如果半導(dǎo)體不能有效地散熱,則會(huì)對器件可以承受的最大工作電壓和溫度產(chǎn)生限制。這是碳化硅優(yōu)于硅的另一個(gè)領(lǐng)域:碳化硅的導(dǎo)熱系數(shù)為1490 W / mK,而硅的導(dǎo)熱系數(shù)為150 W / mK。
與Si-MOSFET相比,SiC反向恢復(fù)時(shí)間如何?
SiC MOSFET和硅MOSFET一樣,都有一個(gè)內(nèi)部二極管。體二極管提供的主要限制之一是不希望的反向恢復(fù)行為,當(dāng)二極管在承載正向正向電流時(shí)關(guān)閉時(shí),就會(huì)發(fā)生反向恢復(fù)行為。因此,反向恢復(fù)時(shí)間(trr)成為定義MOSFET特性的重要指標(biāo)。圖2顯示了1000V Si基MOSFET和SiC基MOSFET的trr之間的比較。可以看出,SiC MOSFET的體二極管非??欤簍rr和Irr的值很小,可以忽略不計(jì),并且能量損失Err大大降低了。
反向恢復(fù)時(shí)間比較(Source:ROHM)
為什么軟關(guān)斷對于短路保護(hù)很重要?
SiC MOSFET的另一個(gè)重要參數(shù)是短路耐受時(shí)間(SCWT)。由于SiC MOSFET占據(jù)芯片的很小區(qū)域并具有高電流密度,因此它們承受可能導(dǎo)致熱破壞的短路的能力往往低于硅基器件。例如,在采用TO247封裝的1.2kV MOSFET的情況下,Vdd = 700V和Vgs = 18V時(shí)的短路耐受時(shí)間約為8-10μs。隨著Vgs的減小,飽和電流減小,并且耐受時(shí)間增加。隨著Vdd的降低,產(chǎn)生的熱量更少,并且承受時(shí)間更長。由于關(guān)斷SiC MOSFET所需的時(shí)間非常短,因此,當(dāng)關(guān)斷速率Vgs高時(shí),高dI / dt可能會(huì)導(dǎo)致嚴(yán)重的電壓尖峰。因此,應(yīng)使用軟關(guān)斷來逐漸降低柵極電壓,避免出現(xiàn)過電壓峰值。
為什么隔離式柵極驅(qū)動(dòng)器是更好的選擇?
許多電子設(shè)備都是低壓電路和高壓電路,它們彼此互連以執(zhí)行控制和電源功能。例如,牽引逆變器通常包括低壓初級側(cè)(電源,通信和控制電路)和次級側(cè)(高壓電路,電動(dòng)機(jī),功率級和輔助電路)。位于初級側(cè)的控制器通常使用來自高壓側(cè)的反饋信號(hào),如果沒有隔離柵,則很容易受到損壞。隔離柵將電路從初級側(cè)到次級側(cè)電氣隔離,從而形成獨(dú)立的接地基準(zhǔn),從而實(shí)現(xiàn)了所謂的電流隔離。這樣可以防止有害的交流或直流信號(hào)從一側(cè)傳遞到另一側(cè),從而損壞功率組件。
聲明:文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容圖片侵權(quán)或者其他問題,請聯(lián)系本站作侵刪。